

Using E-Mental Health to Detect Emerging Psychosis

Kate Haining – PhD Student Supervisor - Professor Peter Uhlhaas

The Big Picture

• Approximately 1.1 billion people are living with mental health and substance use disorders

Leading source of disability, healthcare expenditure and personal suffering

75% of mental health disorders emerge between 15-24 years of age

The Big Picture

• Early detection and intervention is a powerful way to improve long-term outcomes.

- Barriers
 - Stigma
 - Continued underfunding of services
 - Difficultly accessing services

The Big Picture

• Today's youth are surrounded by and immersed in a digital environment.

In the UK, ~93% of individuals aged 18-34 own a smartphone

 Over 50% own a smartphone in low and middle income countries

Early Detection and Intervention in Psychosis

- Psychosis is a severe mental health disorder commonly associated with delusions, hallucinations and changes in behaviour.
- The first episode of psychosis (FEP) is preceded by a so-called clinical high-risk (CHR) state for psychosis

Fusar-Poli et al. 2012

The **Youth Mental Risk and Resilience Study (YouR-Study)** is an MRCfunded project that aims to develop a biomarker for psychosis-prediction

Participants (16-25 years):

- **180** participants meeting CHR criteria (CAARMS/SPI-A)
- **25** participants meeting FEP criteria
- **40** participants with affective disorders/substance abuse
- **50** control participants

Follow-Up: Up to three years to detect transition to psychosis, development of other mental health disorders and functional outcome

An e-Mental Health Approach to Detect Emerging Psychosis

Questionnaires: a) 16-item Prodromal Questionnaire (PQ) b) 9-item Basic Symptom Scale (PCA)

Recruitment

- Email invitations sent to colleges and universities in Glasgow and Edinburgh
- Posters and flyers advertised in NHS clinics and public transportation
- Letters sent to general practioners (GPs)

An e-Mental Health Approach to Detect Emerging Psychosis

McDonald et al. (Schiz Bulletin, 2018)

F

An e-Mental Health Approach to Detect Emerging Psychosis

- 3500 participants took the online questionnaires over a 4-year period
- ~52.3% of participants met cut-off criteria for the PQ (score of ≥ 6)
- ~73.6% of participants met cut-off criteria for the PCA (score of \geq 3)
- ~500 participants (~20-25%) who met cut-off criteria on the PQ and/or PCA were invited for clinical interviews:
 - Comprehensive Assessment of At-Risk Mental States (CAARMS)
 - Schizophrenia Proneness Instrument, Adult Version (SPI-A)

Biomarkers for the Early Detection of Psychosis

1) MEG: auditory/visual oscillations, resting-state

2) MRS: levels of GABA and Glutamate in auditory/visual areas

3) MRI: resting state fMRI, anatomical scan, DTI sequence

MEG-Resting State Activity

88 CHR participants, 21 FEP participants, 34 chronic schizophrenia patients and matched control groups

■

An E-Mental Health Approach to Detect Emerging Psychosis

Digital Innovator Award (with P. Fusar-Poli)

Overall goal: To create an innovative and scalable E-Mental Health Detection tool for emerging psychosis (both CHR and FEP)

Possible ways to improve the current online-screening platform:

- 1) Incorporate known risk-factors for emerging psychosis
- 2) Perform online cognitive testing

3) Obtain speech samples to detect thought disorder/semantic anomalies

wellcome

An E-Mental Health Approach to Detect Emerging Psychosis

Digital Innovator Award (with P. Fusar-Poli)

- Online data will be collected from 3000 participants over an 18 month period
- ~850 participants will also undergo face-to-face assessments at London and Glasgow sites

Summary

- 1) E-mental health approaches have the potential to provide novel ways of identifying emerging psychosis in the community
 - a) significant number of CHR and FEP individuals were detected
 - b) majority of participants were not in touch with services

2) Our findings also:

- a) Highlight the importance of low-threshold entry points for early intervention
- b) Reinforce the unmet mental health needs of young people
- c) Emphasise the need for scalable early detection/intervention methods

Acknowledgments

Jozien Goense

Tineke Grent-'t-Jong

Marc Recasens Hannah Thune Emmi Mikanmaa Lingling Hua

Funding:

Andrew Gumley

Stephen Lawrie

Matthias Schwannauer

Ruchika Gajwani

Joachim Gross

References

Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-Rössler, A., Schultze-Lutter, F., . . . Yung, A. (2013). The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiatry, 70(1), 107-120.

Grent, T., Gross, J., Goense, J., Wibral, M., Gajwani, R., Gumley, A. I., ... & Koethe, D. (2018). Resting-state gammaband power alterations in schizophrenia reveal E/I-balance abnormalities across illness-stages. *eLife*, 7, e37799.

Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of general psychiatry. 2005 Jun 1;62(6):593-602.

McDonald M, Christoforidou E, Van Rijsbergen N, Gajwani R, Gross J, Gumley AI, et al. Using Online Screening in the General Population to Detect Participants at Clinical High-Risk for Psychosis. Schizophr Bull. 2018.

Uhlhaas, P. J., Gajwani, R., Gross, J., Gumley, A. I., Lawrie, S. M., & Schwannauer, M.(2017). The Youth Mental Health Risk and Resilience Study (YouR-Study). BMC Psychiatry, 17(1), 43. doi:10.1186/s12888-017-1206-5

Vos T, Abajobir AA, Abate KH, Abbafati C, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries,1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet. 2017 Sep 16;390(10100):1211-59.

https://www.pewresearch.org/global/2019/02/05/in-emerging-economies-smartphone-adoption-has-grown-more-quicklyamong-younger-generations/

Cognitive Deficits in Community-Recruited CHRs

There is extensive evidence on the presence of neurocognitive deficits in CHR-populations across a range of domains that mirror observations in established ScZ (Fusar-Poli et al., 2012; Giuliano et al., 2012; Bora et al., 2014).

Clinical Outcomes of Community-Recruited CHRs

Mean follow-up period for CHR group (n = 110): ~ 12 months

Transitions to Psychosis: n = 7 total

CHR-subgroups: SPI-A: - CAARMS: n = 2 CAARMS/SPI-A: n = 5 (15-20 %)

No transitions in CHR-negative group (n = 40), one participant developed UHR-symptoms

<u>12 months follow-up:</u>

Follow-up completion 75-80%

n = 61 participants meeting UHR criteria at baseline with a 12-month follow-up:

n = 19 with UHR-criteria (31%)

59.0% have poor functional outcome (GAF < 65)

Clinical Outcomes of Community-Recruited CHRs

Mean follow-up period for CHR group (n = 110): ~ 12 months

Transitions to Psychosis: n = 7 total

CHR-subgroups: SPI-A: - CAARMS: n = 2 CAARMS/SPI-A: n = 5 (15-20 %)

No transitions in CHR-negative group (n = 40), one participant developed UHR-symptoms

<u>12 months follow-up:</u>

Follow-up completion 75-80%

n = 61 participants meeting UHR criteria at baseline with a 12-month follow-up:

n = 19 with UHR-criteria (31%)

59.0% have poor functional outcome (GAF < 65)

Mean follow-up period for CHR group (n = 110): ~ 12 months

Transitions to Psychosis: n = 7 total CHR-subgroups: SPI-A: - CAARMS: n = 2 CAARMS/SPI-A: n = 5 (15-20 %)

No transitions in CHR-negative group (n = 40), one participant developed UHR-symptoms

<u>12 months follow-up:</u>

Follow-up completion 75-80%

n = 61 participants meeting UHR criteria at baseline with a 12-month follow-up:

n = 19 with UHR-criteria (31%)

59.0% have poor functional outcome (GAF < 65)

Clinical Characteristics of Community-Recruited CHRs

Characteristic	CHRs	HCs	CHR-Ns	df	F/ X²/H	р
	(N = 108)	(N = 55)	(N = 42)			
Age (years), M ± SD	21.85 ± 4.33	22.31 ± 3.39	23.24 ± 5.00	2, 9 7	F = 1.27	0.29
Gender, N female (%)	82 (75.9)	37 (63.7)	28 (66.7)	2	X ² = 2.01	0.37
Years of education, M	15.50 ± 3.13	16.38 ± 2.84	16.57 ± 3.62	2, 202	F = 2.29	0.10
± SD						
GAF, median (range)	59.50	88	70	2	H = 105.13	<0.00 [.]
CAARMS-Positive	28.50 (0-72)	0 (0-12)	0 (0-12) 5 (0-24)		H = 129.41	<0.001
Severity, median						
(range)						
GF: Social, median	8 (5-10)	9 (8-10)	8 (6-9)	2	H = 64.44	<0.001
(range)						
GF: Role, median	8(5-9)	9 (5-9)	8 (5-9)	2	H = 45.05	<0.001
(range)						
PAS, median (range)						
Childh ood	0.11 (0-0.57)	0.04 (0-0.21)	0.07 (0-0.46)	2	H = 25.92	<0.001
Early adolescence	0.17 (0-0.54)	0.06 (0-0.23)	0.11 (0-0.46)	2	H = 42.51	<0.001
Late addlescence	0.14 (0-0.57)	0.06 (0-0.29)	0.11 (0-0.71)	2	H = 27.41	<0.001
Medication, N (%)	53 (49.1)	1 (1.8)	19 (45.2)	10	X ² = 45.49	<0.001
Anti-psychotic	0 (0)	0 (0)	1 (2.4)			
Mood stabiliser	1 (0.9)	0 (0)	0 (0)			
Anti-depressant	23 (21.3)	0 (0)	10 (23.8)			
Other	13 (12.0)	1 (1.8)	6 (14.3)			
Multiple	16 (14.8)	0 (0)	2 (4.7)			
Diagnosis, N (%)	97 (89.8)	3 (5,45)	26 (61.9)	2	X ² = 109.5	<0.001
Anxiety disorders	80 (74.1)	0 (0)	19 (45.2)			
Mood disorders	67 (62.0)	0 (0)	12 (28.6)			
Eating disorders	11 (10.2)	0 (0)	1 (2.4)			
Suicide Risk	57 (52.8)	1 (1.8)	10 (23.8)			
Alcohol	31 (28.7)		2 (3.6) 9 (21.4)			
Dependence/Abuse						
Substance	13 (12.0)	0 (0)	1 (2.4)			
Dependence/Abuse						

An e-Mental Health Approach to Detect Emerging Psychosis

Table 3. ROC-Analyses for PQ-16, PCA and PCA/PQ-16 Combined										
Measure	Cut-off	Sensitivity	Specificity	PPV %	NPV %	LR^+	AUC	Standard Error	95% CI	Р
PQ-16	6	0.81	0.44	29	89	1.45	0.72	0.033	0.66–0.78	<.001
PQ-16	7	0.73	0.55	32	88	1.62				
PCA	3	0.95	0.13	25	89	1.06	0.69	0.033	0.62–0.75	<.001
PCA	4	0.90	0.26	27	90	1.22				
PCA	5	0.83	0.44	31	89	1.48				
Combined	10	0.89	0.43	42	89	1.56	0.74	0.028	0.69–0.80	<.001

Table 4. ROC Analyses for a Subset of Questionnaire and Demographic Data										
Number of Items	Threshold	Sensitivity	Specificity	PPV %	NPV %	LR ⁺	AUC	SE	95% CI	Р
12	5	0.80	0.57	46	86	1.86	0.73	0.028	0.67–0.78	<.001
11	4	0.84	0.51	45	77	1.71	0.72	0.03	0.65-0.77	<.001
10	4	0.81	0.57	54	77	1.88	0.71	0.028	0.65–0.76	<.001

A subset of 10 items including familial risk led to an acceptable sensitivity/specificity for the screener (81%/57%)

FEPs had increased PQ-16 scores than CHRs

McDonald et al. (Schiz Bulletin, 2018)

Hoogenboom et al. (2006, Neuroimage)